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Abstract: Newton’s second law states that the external force acting on a system 

is equal to the rate of change of its linear momentum. It is Galilean invariant 

when the system mass is constant. There is a misunderstanding that Newton’s 

second law is neither a valid expression nor Galilean invariant in case of variable 

mass system. In a variable mass system, total system mass is a still remaining 

constant but remnant and ejected masses vary with time at equal rates. In case 

of rocket, system total mass always constant but remnant mass decreasing with 

time and ejected mass is increasing with time at equal rates. In the existing 

literature equation of motion of variable system considered as equation of 

motion of present remnant mass. In this work we consider total mass, remnant 

mass and ejected mass are three different systems and Newton's law validity 

and its Galilean invariance are verified for these three systems.  
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Introduction 

Laws of physics are same under Galilean transformations, in all inertial frames at non 

relativistic speeds. External force acting on a system of constant mass is Galilean invariant. 

If the system mass vary (either increase or decrease) with the time, the system is called as 

variable mass system. At instant t, the variable system has mass  𝑚 and velocity is �⃗�. Then 

from the Newton’s second law, external force acting on the system with respect to the 

stationary observer is 

                                            �⃗�𝑒𝑥𝑡 = 𝑚 
𝑑�⃗⃗�

𝑑𝑡
+ �⃗�

𝑑𝑚

𝑑𝑡
                                      (1) 

If the observer is moving with velocity 𝑣0 then, 

                                            �⃗�𝑒𝑥𝑡 = 𝑚 
𝑑(�⃗⃗�±�⃗⃗�0)

𝑑𝑡
+ (�⃗� ± �⃗�0)

𝑑𝑚

𝑑𝑡
                  (2) 

                                            �⃗�𝑒𝑥𝑡 = 𝑚 
𝑑�⃗⃗�

𝑑𝑡
+ (�⃗� ± �⃗�0)

𝑑𝑚

𝑑𝑡
                         (3)               

Therefore equation (1) is not Galilean invariant. This is the misconception. Because �⃗�𝑒𝑥𝑡  

includes the force applied by ejected mass on remnant mass. In the literature (Alameh, 2024) 

(Halliday, Resnick, R., & Walker, J., 2011) (Morin, 2008) (Goldstein, 2011) Galilean invariant 

expression is derived by neglecting the product ∆𝑚 ∆𝑣. 
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Methodology 

In variable mass system, we can select the system in three different ways. These are 

remnant mass 𝑚1, ejected mass 𝑚2 and total mass of the system  𝑚0. System mass 𝑚0 is 

constant but 𝑚1 and 𝑚2 varies with time at constant rate. Mass 𝑚1 is decreasing and 𝑚2 is 

increasing with time. In this theoretical analysis Galilean invariant equations are derived for 

these three systems. 

                                                               𝑚0 = 𝑚1 + 𝑚2                      (4)   

                                                                  
𝑑𝑚1

𝑑𝑡
= −

𝑑𝑚2

𝑑𝑡
                       (5) 

 

Results and Discussions 

At instant t, mass 𝑚1 (rocket) is moving with velocity �⃗�1, external force with respect 

stationary observer is given by 

                                                            �⃗�1 =  𝑚1
𝑑�⃗⃗�1

𝑑𝑡
+ �⃗�1

𝑑𝑚1

𝑑𝑡
              (6) 

Similarly external force on 𝑚2  (ejected gas jet) is given by                               

                                                           �⃗�2 = 𝑚2
𝑑�⃗⃗�2

𝑑𝑡
+ �⃗�2

𝑑𝑚2

𝑑𝑡
                 (7) 

If the observer is moving with velocity �⃗�0 

                                                       �⃗�1 =  𝑚1
𝑑(�⃗⃗�1±𝑣0⃗⃗ ⃗⃗⃗)

𝑑𝑡
+ (�⃗�1 ± 𝑣0⃗⃗⃗⃗⃗)

𝑑𝑚1

𝑑𝑡
         

                                                      �⃗�1 =  𝑚1
𝑑�⃗⃗�1

𝑑𝑡
+ (�⃗�1 ± 𝑣0⃗⃗⃗⃗⃗)

𝑑𝑚1

𝑑𝑡
        (8) 

         Similarly force                  �⃗�2 =  𝑚2
𝑑�⃗⃗�2

𝑑𝑡
+ (�⃗�2 ± 𝑣0⃗⃗⃗⃗⃗)

𝑑𝑚1

𝑑𝑡
         (9) 

Here 𝑣2 is the velocity of the mass 𝑚2 with respect the stationary observer. In the literature 

(Goldstein, 2011) (Halliday, Resnick, R., & Walker, J., 2011) (Morin, 2008) the 

misinterpretation is equations (8) and (9) are not Galilean invariant and hence they are not 

valid expressions.  

A force vector diagram is shown in fig 1. From the figure external force on 𝑚1 is (Pesce, 

2020) 

                                                            �⃗�1 = �⃗�1𝑠 + 𝑓12  =     𝑚1
𝑑�⃗⃗�1

𝑑𝑡
+ �⃗�1

𝑑𝑚1

𝑑𝑡
     (10)                                 

 Here   𝑓12  is the force applied by 𝑚2  on 𝑚1  and �⃗�1𝑠 is the force on mass 𝑚1 exerted by 

surroundings other than 𝑚2.   

 

                                         
  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Forces diagram on variable mass system 
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Similarly force on mass 𝑚2 is 

                              �⃗�2 =  �⃗�2𝑠 + 𝑓21 = 𝑚2
𝑑�⃗⃗�2

𝑑𝑡
+ �⃗�2

𝑑𝑚2

𝑑𝑡
                 (11) 

𝑓12and 𝑓21 are action-reaction pairs.  

                                          𝑓12 = −�⃗�2
𝑑𝑚2

𝑑𝑡
                                    (12)  

From equation (5), the external force acting on mass 𝑚1is  

               �⃗�1 = �⃗�1𝑠 + �⃗�2
𝑑𝑚1

𝑑𝑡
= 𝑚1

𝑑�⃗⃗�1

𝑑𝑡
+ �⃗�1

𝑑𝑚1

𝑑𝑡
                           (13)  

Equation (13) is Galilean invariant. 

In the combined system of total mass  𝑚 , internal forces cancel each other the external force 

on 𝑚1 is  

                �⃗�1𝑠 = 𝑚1
𝑑�⃗⃗�1

𝑑𝑡
− (�⃗�2 − �⃗�1)

𝑑𝑚1

𝑑𝑡
                                       (14) 

Equation (14) also Galilean invariant and the thrust on 𝑚1 is 

                              �⃗�𝑡ℎ𝑟𝑢𝑠𝑡 = (�⃗�2 − �⃗�1)
𝑑𝑚1

𝑑𝑡
= �⃗�𝑟𝑒𝑙

𝑑𝑚1

𝑑𝑡
                  (18) 

Here �⃗�𝑟𝑒𝑙 is the relative velocity of 𝑚2 with respect to 𝑚1. Similarly from equation (7), 

external force acting on the 𝑚2 is  

                �⃗�2 = �⃗�2𝑠 + 𝑓21 = 𝑚2
𝑑�⃗⃗�2

𝑑𝑡
+ �⃗�2

𝑑𝑚2

𝑑𝑡
                                  (19)  

                �⃗�2 = �⃗�2𝑠 + �⃗�2
𝑑𝑚2

𝑑𝑡
= 𝑚2

𝑑�⃗⃗�2

𝑑𝑡
+ �⃗�2

𝑑𝑚2

𝑑𝑡
                            (20) 

External force acting on  𝑚2 is also Galilean invariant. 

The sum of equations (19) and (20) gives the total force acting on the system of total mass 𝑚. 

                                   F⃗⃗ = �⃗�1 + �⃗�2 = �⃗�1𝑠 + 𝑓12 + �⃗�2𝑠 + 𝑓21           (21) 

Internal forces cancel each other. Therefore 

                                                         F⃗⃗ = �⃗�1𝑠 + �⃗�2𝑠                          (22) 

                              �⃗� = 𝑚1
𝑑�⃗⃗�1

𝑑𝑡
− (�⃗�2 − �⃗�1)

𝑑𝑚1

𝑑𝑡
+ 𝑚2

𝑑�⃗⃗�2

𝑑𝑡
              (23)  

Equation (23) is Galilean invariant, and it is a valid equation of motion of the system of total 

mass 𝑚. 

 

Conclusions 

The present study proves Newton’s second law gives a valid and Galilean invariant 

expression for variable mass systems. Force on total system �⃗� force on remnant mass �⃗�1 and 

force on ejected mass �⃗�2, all are Galilean invariant. 

This review demonstrates that Newton’s second law remains valid and Galilean 

invariant even for systems with variable mass, such as rockets. By treating the total mass, 

remnant mass, and ejected mass as distinct subsystems and carefully accounting for internal 

and external forces, it is shown that the equations of motion derived for each subsystem 

retain their form under Galilean transformations. This resolves common misconceptions in 

the literature and reaffirms the universal applicability of Newtonian mechanics to variable 

mass systems. 
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