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Ahmed T Mohammed 

Department of Mathematics, College of Science, University of the Alkitab, Iraq 

 

Abstract: This study aims to investigate the existence and properties of one-sided 

derivatives of limit summation functions, particularly in relation to Euler-type 

constants, within the context of convex and concave real functions. It also seeks to 

generalize existing theorems related to the differentiability and summability of such 

functions. The research adopts a theoretical and deductive approach grounded in 

mathematical analysis. It begins with a comprehensive literature review of 

foundational concepts such as gamma and zeta functions, convexity, and Euler-

Mascheroni constants. Utilizing formal mathematical reasoning, the study develops 

and proves several new theorems concerning the right and left derivatives of 

summation functions. The derived results are then validated through a series of 

examples involving known real functions, including convex and concave functions. 

The analysis confirms that under specific conditions, one-sided derivatives of 

summation functions exist and obey certain functional equations. Furthermore, the 

study demonstrates that sequences related to these derivatives converge under 

monotonicity assumptions. Applications include generalized inequalities and 

functional identities related to Euler’s constant, gamma, and zeta functions. 

Ultimately, this research contributes to the understanding of marginal addition 

functions and offers new insights into the summability and differentiability of real 

functions involving Euler-type constants. 

Keywords: One-sided Derivatives, Limit Summation Functions, Euler-type 

Constants 

 

Introduction 

The Euler-Mascheroni constants, γ and s, were introduced in the 18th century and 

are now considered some of the most widely recognized and useful mathematical constants. 

However, in 1997, a broader class of -Euler constants is investigated. Webster examined 

functions of the 𝛤 form, which satisfy the Boher-Mollerup theorem, which generalizes the 

functional equation 𝑗 =  (𝑟 + 1) 𝑗(𝑟)𝑓(𝑟) ( 𝑟 >  0). However, a novel idea known as the 

marginal addition function—an addition function for every function—was put forth by M. 

Hooushmand in 2001. It is defined on the portion of R that has every natural number in it. 

It demonstrates how clerical work might be regarded as its subsubject. whether in 

periodicals. He developed other related theories, including the Bohr-Möllrup main theorem, 

and we aim to elucidate certain singularity requirements for marginal addition functions. 

and How Functional Equations Relate to It This has been researched. We remember that 
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Schleicher and Müller employed a comparable tactic—using a series of functions of rational 

groups—to lessen assembly obstacles in 2010. More recently, functional and analytical 

groupings.  

Methodology 

 This study is a theoretical investigation in the field of mathematical analysis that 

employs a deductive approach to formulate and prove theorems concerning one-sided 

derivatives of limit summation functions and their relationship to the Euler constant. The 

methods used include a literature review to gather fundamental concepts related to convex 

and concave functions, gamma and zeta functions, and the Euler constant from various 

scholarly references. Subsequently, a deductive-mathematical approach is applied by 

utilizing existing axioms, definitions, and theorems to develop new theorems and present 

formal proofs systematically. The study also involves symbolic and functional analysis of 

the properties of the examined functions, as well as comparisons with established theories. 

Finally, the proven theorems are validated through their application to several real function 

examples to assess their applicability to both convex and concave functions. 

Result and Discussion 

One-way derivatives of limit summation functions. 

In this section, the conditions for the existence of one-way derivatives for some of the 

limit summation functions we will assess it. Specifically, the existence of one-way 

derivatives for summation functions we will check the limit when the function under study 

is convex or concave. 

Definition 1. Suppose 𝐼 is an interval and 𝑗 ∶  𝐼 → ℝ be a real function. If ƙ ∈ 𝐼 and limit. 

                                                                 lim
ℎ→0+

𝑗(ɳ + ℎ) − 𝑗(ɳ)

ℎ
                                                                 (1.1) 

If it exists, we say that 𝑔 is right derivable in 𝑠 𝑜𝑟 𝑗 has a right derivative in 𝑠 and that 

with the symbol 𝑗+
′ (𝑟) we show if for every 𝑗+

′ (𝑟), 𝑟 ∈ 𝐼 available function 𝑗+
′ ∶ 𝐼 → ℝ by the 

rule of 𝑟 → 𝑗+
′ (𝑟) is called the (right) derivative function of 𝑗. Similar to this article, exists for 

the left derivative. Left derivative 𝑗 𝑖𝑛 𝑠 ∈ 𝐼 with 𝑗−
′ (𝑟) and function 𝑗−

′ ∶ 𝐼 → ℝ by rule 𝑟 →

𝑗−
′ (𝑟) is called the derivative (left) function of 𝑗. Whenever out of existence 𝑗±

′  we are talking 

about the assumption that both functions 𝑗−
′  𝑎𝑛𝑑 𝑗+

′  are available. 

 

Definition 2. Let 𝑗 be left or right differentiable on ∑𝑗 (for example, if 𝑗 is convex or concave, 

these one-way derivatives exist). We explain.  

                                       𝑗𝜎𝑐±′ (ɳ) ≔ (𝑗𝜎𝑛(ɳ))±
′ = 𝑗(𝑐) −∑𝑗±

′ (ɳ + Ƅ).                                        (1.2)

𝑐

Ƅ=1

 

If the limit of this sequence is 𝑚 ∈ ∑𝑗 be it available with the icon 𝑗𝜎±′ (ƙ) we show we 

also define: 
𝛾𝑐±(𝑗, ɳ) = − 𝑗𝜎±′ (ɳ)   

                                                                        𝛾𝑐±(𝑗) = − 𝑗𝜎±′ (0)                                                              (1.3) 

If 𝑔 is derived from 𝑇, that is 𝑗+
′ = 𝑗−

′  then.  
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                                              𝑗𝜎𝑐±′ = 𝑗𝜎𝑐′(ɳ) = −𝛾𝑐±(𝑗, ɳ) = −𝛾𝑐(𝑗, ɳ)                                            (1.4) 

And if the sequels 𝑗𝜎𝑐±′  be convergent, then  

                                         𝑗𝜎𝑐±′ (ɳ) = 𝑗𝜎′(ɳ) = −𝛾±(𝑗, ɳ) = −𝛾(𝑗, ɳ).                                            (1.5) 

 

Theorem 1. Suppose 𝑗 ∶ (𝛿, +∞) → ℝ 𝑎𝑛𝑑 𝛿 < 1 function be convex, and ɲ(𝑗, 1) = 0. In this 

case. 

(A) – for each 𝑗𝜎𝑐±′ (ɳ), ɳ ≥ 0 convergent and  

−𝛾+(𝑗, 1)   ≤  −𝛾−(𝑗, 1) ≤ 𝑗𝜎+′ (ɳ) ≤ 𝑗𝜎−′ (ɳ) 

                                                                    ≤ 𝑗𝜎̃(ɳ) ≤ −𝛾+(𝑗) ≤ −𝛾−(𝑗);       (0 < ɳ ≤ 1).            (1.6) 
(B)- function 𝑗𝜎±′ (ɳ) A solution to a functional equation  

                                                            𝑆(ɳ) = 𝑗±
′ (ɳ) + ɲ(ɳ − 1)                                                           (1.7) 

Is.  

Assume a proof 𝑞 𝑎𝑛𝑑 0 < ɳ < 1 be a natural number. Because 𝑗 is convex, therefore 

given that 𝑜 < 𝑜 + ɳ < 𝑜 + 1 by applying the mean value theorem on the interval [𝑜, 𝑜 + ɳ], 

number 𝑠𝑜 ∈ (𝑜, 𝑜 + ɳ) available so that  

                                        𝑗 −
′ (ɳ Ƅ) ≤

𝑗(ɳ + 𝑢) − 𝑗(Ƅ)

𝑠
≤ 𝑗+

′ (ɳ 𝑢)                                                         (1.8) 

By multiplying the unequal sides, we get (1.8) in −ƙ 
                                            −ɳ 𝑗+

′ (𝑟𝑢) ≤ 𝑗(Ƅ) − 𝑗(ɳ + Ƅ) ≤ −𝑟ɳ(ɳ Ƅ)                                            (1.9) 
As a result  

                          −ɳ∑𝑗+
′ (ɳ𝑞) ≤ ∑(𝑗(Ƅ) − 𝑗(ɳ + Ƅ)) ≤ −ɳ∑𝑗−

′ (ɳƄ)                            (1.10)

𝑐

Ƅ=1

𝑐

Ƅ=1

𝑐

Ƅ=1

 

So 

ɳ 𝑗(𝑐) − ɳ∑𝑗+
′ (ɳ Ƅ)  ≤ ɳ 𝑗(𝑐) +∑(𝑗(Ƅ) − 𝑗(ɳ + Ƅ)     

𝑐

Ƅ=1

𝑐

Ƅ=1

 

                                                                          ≤ ɳ𝑗(𝑐) − ɳ∑𝑗−
′

𝑐

Ƅ=1

(ɳ Ƅ).                                            (1.11) 

By dividing the sides of the last relation by 𝑠. It is concluded that  

                                  𝑗(𝑐) −∑𝑗+
′ (ɳ𝑜) ≤

𝑗𝜎𝑐(ɳ)

𝑠
≤ 𝑗(𝑐) −∑𝑗−

′

𝑐

Ƅ=1

(ɳ 𝑞)

𝑐

Ƅ=1

                                   (1.12) 

Because 𝑗 is convex, 𝑗+
′  𝑎𝑛𝑑 𝑗−

′  are ascending functions and 𝑗−
′ , ≤ 𝑗+

′  as a result  
𝑗−
′ (Ƅ)  ≤   𝑗+

′ (Ƅ) ≤ 𝑗−
′ (ɳ Ƅ) ≤ 𝑗+

′ (ɳ Ƅ)                                      
                                                 ≤   𝑗−

′ (ɳ + Ƅ) ≤ 𝑗+
′ (ɳ + Ƅ) ≤ 𝑗−

′ (Ƅ + 1) ≤ 𝑗+
′ (Ƅ + 1)               (1.13) 

By summing the inequalities (1.13) per 1 ≤ Ƅ ≤ 𝑐 and then add 𝑗(𝑐) on the sides of 

the resulting inequalities, we get. 

𝑗(𝑐) −∑𝑗+
′ (Ƅ + 1) ≤ 𝑗(𝑐) −∑𝑗−

′ (Ƅ + 1)                                    

𝑐

Ƅ=1

𝑐

Ƅ=1

 

≤ 𝑗(𝑐) − 𝑗−
′ (ɳ + Ƅ)   

     ≤ 𝑗(𝑐) −∑𝑗−
′ (ɳ + Ƅ)

𝑒

Ƅ=1
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≤ 𝑗(𝑐) −∑𝑗+
′ (ɳ Ƅ) 

𝑐

Ƅ=1

 

  ≤ 𝑗(𝑐) −∑𝑗−
′ (ɳ Ƅ)

𝑐

Ƅ=1

   

  ≤ 𝑗(𝑐) −∑𝑗+
′ (Ƅ)

𝑐

Ƅ=1

     

                                                                       ≤ 𝑗(𝑐) −∑𝑗−
′ (Ƅ)

𝑒

Ƅ=1

.                                                           (1.14) 

Now according to the definition 𝑗𝜎𝑐±′ (𝑟) and we will have inequalities (1.12) and 

(1.14). 
 𝑗𝜎𝑐+′ (1) ≤ 𝑗𝜎𝑐+′ (ɳ)                      

    ≤ 𝑗𝜎𝑐−′ (ɳ)     

                 ≤ 𝑗(𝑐) −∑𝑗+
′ (ɳ 𝑢)

𝑐

Ƅ=1

 

  ≤
𝑗𝜎𝑐(ɳ)

ɳ
        

                 ≤ 𝑗(𝑐) −∑𝑗′(ɳ Ƅ)

𝑐

Ƅ=1

 

   ≤ 𝑗𝜎𝑐+′ (Ƅ)     

                                                                                 ≤ 𝑗𝜎𝑐−′ (Ƅ)                                                                     (1.15) 

As a result 
−𝛾𝑐+1(𝑗, 1)  ≤  −𝛾𝑐−(𝑗, 1) 
                   ≤ 𝑗𝜎𝑐+′ (ɳ) 

                     ≤ 𝑗𝜎𝑐−′ (ɳ)   

                   ≤ 𝑗𝜎̃𝑐(ɳ)   

                         ≤ −𝛾𝑐+(𝑗)    
                                                                                           ≤ −𝛾𝑐−(𝑗)                                                         (1.16) 

On the other hand, since 𝑗 is [1, +∞) it is convex, therefore [2].  
𝑗(𝑐 + ℎ) − 𝑗(𝑐)

ℎ
≤ 𝑗(𝑐 + 1) − 𝑗(𝑐)                     

                                                                               ≤
𝑗(𝑐 + 1 + ℎ) − 𝑗(𝑐 + 1)

ℎ
                                     (1.17) 

Where in 0 < ℎ < 1. Now with the assumption ℎ → 0+, we get  
                                                                   𝑗+

′ (𝑐) ≤ −Ƙ𝑐(𝑗, 1) ≤ 𝑗+
′ (𝑐 + 1)                                        (1.18) 

Similarly with the assumption −1 < ℎ < 0 convexity of function 𝑗 on [𝑐 + ℎ, 𝑐, 𝑐 + 1 +

ℎ, 𝑐 + 1] we get  
                                                        𝑗−

′ (𝑐) ≤ −ɲ𝑐(𝑗, 1) ≤ 𝑗−
′ (𝑐 + 1)                                                   (1.19) 

Now we can conclude from the relations (1.18) and (1.19) that [3].  
𝑗−
′ (𝑐) ≤ 𝑗+

′ (𝑐)                        
≤ −ɲ𝑐(𝑗, 1)    

   ≤ −𝑗−
′ (𝑐 + 1)   
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                                                                              ≤ 𝑗+
′ (𝑐 + !)                                                                     (1.20) 

As a result  

ɲ𝑐(𝑗±
′ , 1) = 𝑗′(𝑐) − 𝑗±

′ (𝑐 + 1) 
                                ≤ −𝑗±

′ (𝑐 + 1) − ɲ𝑐(𝑗, 1)    
                                                                                 ≤   0                                                                               (1.21) 

We also have  

  𝑗𝜎𝑐±′ (ɳ) − 𝑗𝜎(𝑐+1)±
′ (ɳ) = 𝑗(𝑐) −∑𝑗±

′

𝑐

Ƅ=1

(Ƅ + ɳ) − 𝑗(𝑐 + 1) +∑𝑗±
′

𝑐

Ƅ=1

(Ƅ + ɳ) 

                                                           = 𝑗(𝑐) − 𝑗(𝑐 + 1) + 𝑗±
′ 2(𝑐 + 1 + ɳ)                                      (1.22) 

As a result  
𝑗𝜎
(𝑐+1)±
′ (ɳ) − 𝑗𝜎𝑐±′ (ɳ) = −ɲ𝑐(𝑔, 1) − 𝑗±

′ (𝑐 + 1 + ɳ)                 

                                                                           ≤ −ɲ𝑐(𝑗, 1) − 𝑗±
′ (𝑐 + 1) ≤ 0                                     (1.23) 

This means that for every 0 ≤ ɳ, there is a functional sequence  
𝑗𝜎𝑐±′ (ɳ) = −𝛾𝑐±(𝑗, ɳ) 

It is descending. Now by putting ɳ = 0 in the equation (1.23) and using the equation 

(1.21) to we get  

ɲ𝑐(𝑗±
′ , 1) = 𝑗±

′ (𝑐) − 𝑗±
′ (𝑐 + 1)                   

              ≤ −(ɲ𝑐(𝑗, 1) + 𝑗±
′ (𝑐 + 1)) 

     = 𝑗𝜎(𝑐+1)±
′ (0) − 𝑗𝜎𝑐±′ (0) 

                                                                       = −𝛾(𝑐+1)𝑠(𝑗) + 𝛾𝑐±(𝑗) ≤ 0                                           (1.24) 

We also have  
           𝑗𝜎𝑐±′ (ɳ) − 𝑗𝜎𝑐±′ (ɳ − 1) = 𝑗±

′ (ɳ) − 𝑗±
′ (ɳ + 𝑐), 

                                                    −𝛾𝑐±(𝑗, 1) = 𝑗±
′ (1) − 𝑗±

′ (𝑐 + 1) − 𝛾𝑐±(𝑗)                                   (1.25) 

 

Theorem 2. If ∶ [1, +∞) → ℝ have a monotonic derivative and Ƙ(𝑗, 1) = 0 then the sequel 

𝑗𝜎𝑐′(ƙ) Roy [0, +∞) is convergent and if 𝑗′ is ascending, then 𝑗(ɳ) 𝑎𝑛𝑑 𝑗𝜎̃(ɳ) in inequality.  

                                    −𝛾(𝑗, 1) ≤ 𝑗𝜎′(ɳ) ≤ 𝑗𝜎′(ɳ) ≤ −𝛾(𝑗);                (0 < ɳ ≤ 1)                (1.26) 

They apply also, if 𝑗′ is downward, the direction of the above inequality is reversed. 

In addition, 𝑗𝜎′(ɳ) a solution to a functional equation  
                                                       ɲ(ɳ) = 𝑗′(ɳ) + ɲ(ɳ − 1)                       (ɳ > 1)                     (1.27) 

 

The result 1. Assume 𝑗 ∶ (𝛿,∞) → ℝ 𝑎𝑛𝑑 𝛿 < 1 A convex (concave) function and sequence 

ɲ𝑒(𝑗, 1) be bordered in this case. 

(A)– sequel to 𝑗𝜎𝑐±′ (ɳ) is convergent for every 0 ≤ ɳ and if 𝑗 is convex, then 𝑗𝜎±′ (ɳ) in 

inequalities  

 
             𝑗±

′ (1) + ɲ(1) − 𝛾±(𝑗) ≤ 𝑗𝜎±′ (ɳ) ≤ 𝑗𝜎̃(ɳ) ≤ −𝛾±(𝑗),           (0 < ɳ ≤ 1)                (1.28) 

And if 𝑗 is concave, then 
      −𝛾±(𝑗) ≤ 𝑗𝜎̃(ɳ) ≤ 𝑗𝜎±′ (ɳ) ≤ 𝑗±

′ (1) + ɳ(1) − 𝛾±(𝑗),           (0 < ɳ ≤ 1)                 (1.29) 

(B)- function 𝑗𝜎±′ (ɳ) a solution to a functional equation  

                        ɲ(ɳ) = 𝑗±
′ (ɳ) + ɳ(𝑗, 1) + ɲ(𝑟 − 1)                                              (1.30) 
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Is Proof: because 𝑗 is a convex function therefore ɲ𝑐(𝑗, 1) it is uniform and because it 

is bounded assumption is as a result ɲ𝑒(𝑗, 1) is convergent we put. 
                                            𝑓(ɳ) = 𝑗(ɳ) + ɲ(1)ɳ                           (𝛿 < ɳ)                                   (1.31) 

In this case 
𝑓±
′(ɳ) = 𝑗±

′ (ɳ) + 𝑆(1) 

And 
𝑓𝜎𝑐(ɳ) = 𝑗𝜎𝑐(ɳ). 

Next, by presenting an example, we show that theorem 1. Is the generalization of 

theorem 2. 

 

Example 1. function 𝑔 ∶ (
1

2
, ∞) → ℝ by rule. 

𝑗(ɳ) = {

log                               ɳ ≥ 2
2

3
𝑠 + 𝑙𝑜𝑔2 −

4

3

1

2
< ɳ ≤ 2

 

Consider. 

(A) – show that this function is concave. 

(B) – show using theorem 1.  

𝛾 −
5

3
≤
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log(ɳ + 1)

ɳ
 

    ≤ Ѱ(ɳ + 1) −
1

ɳ + 1
−
2

3
 

 ≤ Ѱ(1) − 
1

6
                    

                                                                       ≤ −𝛾 −
1

6
                                                                             (1.32)   

 (C) – using theorem 1. Again, show: 

−𝛾 −
17

6
≤
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log(ɳ + 1)

ɳ
           

≤  Ѱ(ɳ + 1) −
1

ɳ + 1
−
2

3
 

                                                                  ≤ −γ −
1

6
                             (0 < ɳ ≤ 1).                              (1.33) 

Solve (A) – from your previous knowledge in elementary math (by referring to the 

graph of the 𝑗 function) easily it turns out that 𝑗 is concave on its domain  

(B) – we have  

𝑗𝜎𝑐′ + (ɳ) = 𝑗(𝑐) −∑𝑗′(ɳ + 𝑐)

∞

𝑐=1

 

= (𝑙𝑜𝑔𝑐 −∑
1

ɳ + Ƅ

𝑐

Ƅ=1

) −
1

ɳ + 1
−
2

3
(ɳ >

1

2
). 

as a result  
−𝛾𝑐(𝑗) =   𝑗𝜎𝑐′ + (0) 

= 𝑗(𝑐) −∑𝑗+
′

𝑐

Ƅ=1

(Ƅ) 
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Ѱ = (𝑙𝑜𝑔𝑐 −∑
1

Ƅ

𝑐

Ƅ=1

) −
5

3
 

So 

                                                 −𝛾+(𝑗) = lim
𝑐→∞

(−𝛾𝑐+(𝑗)) = −𝛾 −
5

3
                                                   (1.34) 

Also 
𝑗𝜎+′ (ƙ) = lim

𝑐→∞
𝑗𝜎𝑐′ + (ɳ)                                                                    

= lim
𝑐→∞

(1𝑗𝑐 −∑
1

ɳ + Ƅ

𝑒

Ƅ=1

) −
1

ɳ + 1
−
2

3
            

                              = lim
𝑐→∞

[(𝑙𝑜𝑔𝑒 −∑
1

Ƅ

𝑒

Ƅ=1

) − (∑
1

Ƅ
−∑

1

𝑟 + Ƅ

𝑒

Ƅ=1

𝑒

Ƅ=1

)] −
1

ɳ + 1
−
2

3
 

                                             = lim
𝑐→∞

[(𝑙𝑜𝑔𝑜 −∑
1

Ƅ

𝑒

Ƅ=1

) + (∑
1

Ƅ + 1
−∑

1

Ƅ + ɳ + 1

𝑒

Ƅ=0

𝑒

Ƅ=0

)] −
1

ɳ + 1
−
2

3
 

= −𝛾 +∑(
1

Ƅ + 1
−

1

Ƅ + ɳ + 1
) −

1

ƙ + 1
−
2

3

∞

Ƅ=0

  

= Ѱ(ƙ + 1) −
1

ɳ + 1
−
2

3
                      (ɳ >

1

2
)  

So 

                                      𝑗𝜎+′ (ɳ) = Ѱ(𝑠 + 1) −
1

ɳ + 1
−
2

3
                 (ɳ >

1

2
)                                  (1.35) 

In addition 

𝑗𝜎𝑐(ɳ) = ɳ𝑔(𝑐) +∑(𝑗(Ƅ) − 𝑗(ɳ + Ƅ))

𝑐

Ƅ=1

 

                 = ɳ 𝑙𝑜𝑔𝑐 +∑(logƄ − log (ɳ + Ƅ))

𝑐

Ƅ=1

 

 = ɳ log 𝑐 +∑𝑙𝑜𝑔
Ƅ

ɳ + Ƅ 
 

𝑐

Ƅ=1

 

= log 𝑐ɳ + log∏
Ƅ

ɳ + Ƅ

𝑐

Ƅ=1

  

               = 𝑙𝑜𝑔 𝑐ɳ + 𝑙𝑜𝑔
1 ∙ 2 ∙ … ∙ 𝑐

(ɳ + 1)… (ɳ + 𝑐)
 

                             = log  𝑐ɳ + 𝑙𝑜𝑔
𝑐!

(ɳ + 1)(ɳ + 2)… (ɳ + 𝑐)
 

= 𝑙𝑜𝑔
𝑐! 𝑐ɳ

(ɳ + 1)… (ɳ + 𝑐)
  

As a result  
𝑗𝜎(ɳ) = lim

𝑐→∞
𝑗𝜎𝑐 (ɳ)                                        

= lim
𝑐→∞

𝑐! 𝑐ɳ

(ɳ + 1)… (ɳ + 𝑐)
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= log lim
𝑐→∞

𝑐! 𝑐ɳ

(ɳ + 1)… (ɳ + 𝑐)
  

                                        = log lim
𝑐→∞

𝑐! 𝑐ɳ𝑐

(ɳ + 1)… (ɳ + 𝑐)(ɳ + 𝑐 + 1)

ɳ + 𝑐 + 1

𝑐
 

                                          = 𝑙𝑜𝑔 (lim
𝑐→∞

𝑐! 𝑐ɳ+1

(ɳ + 1)… (ɳ + 𝑐 + 1)
∙ lim
𝑛→∞

𝑐 + ɳ + 1

𝑐
) 

= log(𝛤(ɳ + 1) ∙ (ɳ + 1))       

= log𝛤(ɳ + 1) + log(ɳ + 1) 
The result is that 

                                                       𝑗𝜎(ɳ) = 𝑙𝑜𝑔𝛤(ɳ + 1) + 1𝑗(ɳ + 1)                                            (1.36) 
As a result  

                                          𝑗𝜎̃(ɳ) =
𝑗𝜎(ɳ)

ɳ
=
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log (ɳ + 1)

ɳ
                                     (1.37) 

Now, theorem 1. Requires that [4]. 
                                           −𝛾+(𝑗) ≤ 𝑗𝜎̃(ɳ) ≤ 𝑗𝜎+′ (ɳ) ≤ −𝛾+(𝑗. 1)                                                (1.38) 

Relationship now. 

Ѱ(ɳ + 1) =
1

𝑠
+ Ѱ(ɳ) 

And relations (1.34),(1.35),(1.36),(1.37) and (1.38) result that 

   −𝛾 −
5

3
≤
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log (ɳ + 1)

ɳ
 

           ≤ Ѱ(ɳ + 1) −
1

ɳ + 1
−
2

3
 

≤ Ѱ(2) −
1

2
−
2

3
   

                                                                           = Ѱ(1) −
1

6
 .                                                                     (1.39) 

(C) Quite similar to part (B) it can be seen that. 

−𝛾−(𝑔) = −𝛾 −
17

6
                

           𝑗𝜎−′ (ɳ) = Ѱ(ɳ + 1) −
1

ɳ + 1
−
2

3
 

                      𝑗𝜎̃(ɳ) =
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log (ɳ + 1)

ɳ
 

And as a result  

−𝛾 −
17

6
≤
𝑙𝑜𝑔𝛤(ɳ + 1)

ɳ
+
log (ɳ + 1)

ɳ
 

         ≤ Ѱ(ɳ + 1) −
1

ɳ + 1
−
2

3
 

                             ≤ −𝛾 −
1

6
                     (0 < ɳ ≤ 1) 

 



Jurnal Pendidikan Matematika Vol: 2, No 3, 2025 9 of 16 

 

 

https://edu.pubmedia.id/index.php/ppm 

𝑗(ɳ) =

{
 
 

 
 −√ɳ − 1   ɳ ≥ 2         

 
 

−ɳ + 1      
1

2
< ɳ ≤ 2

 

Consider. 

(A) show that this function is convex. 

(B) show using theorem 1. 

1 −
1

2
∑

2√Ƅ − 1 − √Ƅ − √Ƅ − 1

√Ƅ + 1(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

   ≤ 1 −
1

2
∑

2√Ƅ − 1 − √Ƅ − √Ƅ − 1

√Ƅ + 1(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

                        ≤ lim
𝑐→∞

(−√𝑐 − 1 +∑
1

√ɳ + Ƅ − 1 + √Ƅ − 1

𝑐

Ƅ=1

) 

                                                         ≤ 1 +
1

2
𝜁 (
1

2
)                     (0 < ɳ ≤ 1)                                        (1.40) 

Solve it is quite similar to the previous example. (A) by drawing the graph of 𝑗, it is 

easy to seethat 𝑗 is convex. 

(B) – we have  

𝑗𝜎𝑐(ɳ) = ɳ𝑗(𝑐) +∑(𝑗(Ƅ) − 𝑗(ɳ + Ƅ))                      

𝑐

Ƅ=1

 

= −ɳ√𝑐 − 1 +∑(√ɳ + Ƅ − 1 − √Ƅ)

𝑐

Ƅ=1

 

= −ɳ√𝑐 − 1 +∑
ɳ

√ɳ + Ƅ − 1 + √Ƅ

𝑐

Ƅ=1

 

In result  

𝑗𝜎̃(ɳ) =
𝑗𝜎(ɳ)

ɳ
 

= lim
𝑐→∞

(−√𝑐 − 1 +∑
1

√ɳ + Ƅ − 1 + √Ƅ

𝑐

Ƅ=1

) 

And  

𝑗𝜎𝑐′±(ɳ) = 𝑗(𝑐) −∑𝑗±
′

𝑐

Ƅ=1

(ɳ + Ƅ) 

                             = −√𝑐 − 1 +
1

2
∑

1

√ɳ + Ƅ − 1

𝑐

Ƅ=1

 

In result  
𝑗𝜎±(ɳ) = lim

𝑐→∞
𝑗𝜎𝑐±′ (ɳ) 

                                                           = 1 −
1

2
∑

2√Ƅ + ɳ − (√Ƅ − √Ƅ − 1)

√Ƅ + ɳ(√Ƅ + √Ƅ − 1)

∞

Ƅ=1
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And so 
𝑗𝜎′(1) = −𝛾(𝑗, 1) 

                                                                  = 1 −
1

2
∑

2√Ƅ + ɳ − (√Ƅ − √Ƅ − 1)

√Ƅ + ɳ(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

And 
𝑗𝜎′(Ƅ) = −𝛾(𝑗) 

                                                                      = 1 −
1

2
∑

2√Ƅ + ɳ − (√Ƅ − √Ƅ − 1)

√Ƅ + ɳ(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

                          = 1 −
1

2
∑(Ƅ = 1)√Ƅ

∞

Ƅ=1

 

Now according to theorem 1. 
−𝛾(𝑗, 1) ≤ 𝑗𝜎′(ɳ) ≤ 𝑗𝜎̃(ɳ) ≤ −γ(j) 

In result  

1 −
1

2
∑

2√Ƅ + ɳ − (√Ƅ − √Ƅ − 1)

√Ƅ + ɳ(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

≤ 1 −
1

2
∑

2√Ƅ + ɳ − (√Ƅ − √Ƅ − 1)

ɳ(√Ƅ + √Ƅ − 1)

∞

Ƅ=1

 

                ≤ lim
𝑐→∞

(−√𝑐 − 1 +∑
1

√ɳ + Ƅ − 1 + √Ƅ − 1

𝑐

Ƅ=1

) 

≤ 1 +
1

2
𝜁 (
1

2
)             (0 < ɳ ≤ 1).          

Suppose (𝑑𝑐)1
∞ be a series of actual numbers in which.  

(A) - (𝑑𝑐) is ascending. 

(B) – for each 𝑑𝑐 <
𝑑𝑐−1+𝑑𝑐+1

2
, 𝑐 ( means 𝑑𝑐 is strictly convex). 

(C) - lim
𝑐→∞

(𝑑𝑐+1 − 𝑑𝑐) = 0 sequence of functions 𝑗𝑐 ∶ [𝑐, 𝑐 + 1) → ℝ by rule 𝑔𝑐(ɳ) =

(𝑑𝑐+1 − 𝑑𝑐)(ɳ − 𝑐) = 𝑑𝑐 we define and then the function 𝑗 ∶ [1, +∞) → ℝ by rule. 

                                                        𝑗(ɳ) =∑𝑗𝑐(ɳ)ɲ[𝑐,𝑐+1]

∞

𝑐=1

(ɳ)                                                       (1.41) 

We explain. Intuitively, the graph 𝑗 is the set of line segments that go from the points 

𝐷1(1, 𝑑1) 𝑎𝑛𝑑 𝐷1(2, 𝑑2)…passes. It is clear that 𝑗 is not differentiable at correct points and 

therefore the theorem 1. Is not applicable to it and we can apply theorem 1. About it. And 

from the last theorem, it can be easily seen that 𝑗 is summable and inequalities (1.6) for it is 

established. 

 

More examples and inequalities 

In this section, using theorem 2. We prove two important inequalities that these 

inequalities they have already been proven in reference by leforgia and natalifi with another 

and laborious method. 
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Example 2. Function 𝑗 ∶ [1,∞) → ℝ by rule 𝑗(ɳ) = log𝑚 considered and using show from 

theorem 2. 

                             −1 + 𝛾 ≤
− log𝛤 (ɳ + 1)

ɳ
≤ 𝛾(𝑙𝑜𝑔, ɳ) ≤ 𝛾           0 < ɳ ≤ 1                          (1.42) 

And draw conclusions from it  

                      𝑐−𝛾ɳ ≤ 𝑐ɳѰ(ɳ+1) ≤ Γ(ɳ + 1) ≤ 𝑐(1−𝛾)ɳ                  (0 < ɳ ≤ 1) 
Solve according to example 2. We see that  

𝑙𝑜𝑔𝜎(ɳ) = log 𝛤(ɳ + 1)        
             𝑙𝑜𝑔𝜎′(ɳ) = −𝛾(𝑙𝑜𝑔, ɳ) = Ѱ(ɳ + 1)  

𝛾 = 𝛾(𝑙𝑜𝑔, 0)  

In result 
−𝛾(𝑗, 0) = −Ѱ(1) = −1 + 𝛾 

   𝑗𝜎̃(ɳ) =
𝑗𝜎(ɳ)

ɳ
=
− log𝛤(ɳ + 1)

ɳ
                    

𝑗𝜎′(ɳ) = 𝛾(𝑙𝑜𝑔, ɳ)            
𝑗′(1) + ɲ(1) − 𝛾(𝑗) = 1 + 0 − 1 + 𝛾 = 𝛾                     

Now according to inequality 
−𝛾(𝑗) ≤ 𝑗𝜎̃(ɳ) ≤ 𝑗𝜎′(ɳ) ≤ 𝑗′(1) + ɲ(1) − 𝛾(𝑗),      (0 < ɳ ≤ 1) 

Will have  

−1 + 𝛾 ≤
− log𝛤(ɳ + 1)

ɳ
≤ 𝛾(𝑙𝑜𝑔, ɳ) ≤ 𝛤,       (0 < ɳ ≤ 1). 

Now, by multiplying the sides of the last inequality, we will have – 𝑠 [8].  
−𝛾ɳ ≤ −ɳ γ(log, ɳ) ≤ log 𝛤(ɳ + 1) ≤ ɳ(1 − 𝛾) 

In result 

𝑐−𝛾ɳ ≤ 𝑐ɳѰ(ɳ+1) ≤ 𝛤(ɳ + 1) ≤ 𝑐(1−𝛾)ɳ. 

The first part of the next example, inequalities for the zeta function and (𝑣, ɳ) 𝜁 for 

the case that 1< 𝑣 and gives 0 < ɳ ≤ 1 

 

Example 3. Suppose 𝑚 is a constant real number. Function by rule 𝑗(ɳ) = ɳ𝑠 we explain. 

According to three different modes, 𝑠 = −1, 𝑠 < 0 and 0 < 𝑠 < 1 using theorem 1. Show [8]. 

(A)  

𝑠𝜁(1 − 𝑠) ≤
1

ɳ
∑

1

(𝑐 + ɳ)
−

1

𝑐 − 𝑠

∞

𝑐=1

 

                     ≤ 𝑠 (𝜁(1 − 𝑠, ɳ) −
1

ɳ1−𝑠
) 

                                                                               ≤ 𝑠𝜁(1 − s) − s                                                            (1.43) 
(B)  

𝑠 +
𝜋2

6
≤∑

1

(𝑐 + ɳ)2

∞

𝑐=1

       

         ≤ ∑
1

𝑐2 + 𝑐ɳ
 

∞

𝑐=1

 

                                                                                  ≤
𝜋2

6
                       (0 < ɳ ≤ 1)                              (1.44) 



Jurnal Pendidikan Matematika Vol: 2, No 3, 2025 12 of 16 

 

 

https://edu.pubmedia.id/index.php/ppm 

(C)  

1 −∑((𝑐 − 1)𝑠 − 𝑐𝑠 − 𝑠𝑐𝑠−1)

∞

𝑐=1

 

                   ≤ 1 − 𝑠(ɳ + 1)𝑠−1 −∑((𝑐 − 1)𝑠 − 𝑐𝑠 − 𝑠(ɳ +)𝑠−1)

∞

𝑐=1

 

≤
1

𝑟
∑((1 + ɳ)𝑐𝑠 − (𝑐 + ɳ)𝑠 − 𝑣(𝑐 − 1)𝑠)

∞

𝑐=1

 

                                                 ≤ 1 − 𝑠 −∑((𝑐 − 1)𝑠 − 𝑐𝑠 − 𝑠𝑐𝑠−1).

∞

𝑐=1

                                             (1.45) 

Solve (A). in this case ɲ(1) = 0 𝑎𝑛𝑑 𝑗′′(ɳ) > 0 𝑎𝑛𝑑 𝑗′(ɳ) < 0 because 𝑗′′(ɳ) > 0 𝑠𝑜 𝑗′ is 

ascending and according to the theorem 1. We have [9].  
                                −𝛾(𝑗, 1) ≤ 𝑗𝜎′(ɳ) ≤ 𝑗𝜎̃(ɳ) ≤ −𝛾(𝑗),               (0 < ɳ ≤ 1)                       (1.46) 

We have now 

𝑗𝜎𝑐′(𝑠) =
1

𝑐−ɳ
− ɳ∑

1

(𝑠 + Ƅ)1−ɳ
+

ɳ

𝑠1−ɳ

𝑐

Ƅ=0

 

So 

                                                            𝑗𝜎′ = 𝑠 (
1

𝑟1−𝑠
− 𝜁(1 − 𝑠, ɳ))                                                     (1.47) 

                                                             −𝛾(j, 1) = s(1 − ζ(1 − s))                                                         (1.48) 

−𝛾(𝑗, 1) = −𝛾(𝑗) = 𝑗𝜎′(0) = lim
𝑐→∞

(𝑐𝑠 −∑𝑠𝑢𝑠−1
𝑐

Ƅ=1

)                          

                                             = 𝑠∑
1

𝑢1−𝑠
= 𝑠𝜁(1 − 𝑠) = 2(2𝜋)−𝑠𝛤(𝑠 + 1) cos (

𝜋

2
𝑠) 𝜁(𝑠)           (1.49)

∞

Ƅ=1

 

Now, from the relations (1.46) ,(1.47), (1.48) and (1.49) the relation (1.43) is obtained. 

(to this is the case that after placing the obtained values in (1.47) ,(1.48) ,(149) in (1.46) and 

then multiplying the sides by a negative one, the verdict is obtained). 

(B) - 𝑟 = −1. in this case 𝑗(ɳ) =
1

ɳ
  so 

𝑗′(ɳ) = −
1

ɳ2
< 0,                      𝑗′′(ɳ) =

1

ɳ3
> 0 

Therefore, 𝑗′ is ascending again and we have  

𝑗𝜎𝑐(ɳ) =
ɳ

𝑐
+∑(

1

Ƅ
−

1

Ƅ + ɳ
)

𝑐

Ƅ=1

 

         =
ɳ

𝑐
+ ɳ∑

1

Ƅ2 + 𝑢ɳ

𝑐

Ƅ=1

 

So 

𝑗𝜎(ɳ) = ɳ∑
1

Ƅ2 + Ƅɳ

∞

Ƅ=1
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In result  

𝑗𝜎̃(ɳ) =
𝑗𝜎(ɳ)

ɳ
=∑

1

Ƅ2 + Ƅɳ

∞

Ƅ=1

 

Also 

𝑗𝜎𝑐′(ɳ) = 𝑗(𝑐) −∑𝑗′
𝑐

Ƅ=1

(𝑣 + Ƅ) 

     =
1

𝑐
+∑

1

(ɳ + Ƅ)2

𝑒

Ƅ=1

 

Therefore  

𝑗𝜎′(ɳ) =∑
1

(ɳ + Ƅ)2

∞

Ƅ=1

 

In result  

−𝛾(𝑗) = −𝛾(𝑗, 0) = 𝑗𝜎′(0) = ∑
1

Ƅ2
=
𝜋2

6

∞

Ƅ=1

 

−𝛾(𝑗, 1) = 𝑗𝜎′(1) =∑
1

(1 + Ƅ)2
𝜋2

6
− 1

∞

Ƅ=1

            

Therefore, it follows from the relationship (1.46) that [8]. 

              
𝜋2

6
− 1 ≤∑

1

(Ƅ + ɳ)2
≤∑

1

Ƅ2 + Ƅ2ɳ
≤
𝜋2

6
                  0 < ɳ ≤ 1

∞

Ƅ=1

∞

Ƅ=1

 

(C) – in this case  0 < 𝑠 < 1. 
𝑗(ɳ) = ɳ𝑠 

             𝑗′(ɳ) = 𝑠ɳ𝑠−1 > 0 

                                                𝑗′′(ɳ) = 𝑠(𝑠 − 1)ɳ𝑠−2 =
𝑠(𝑠 − 1)

ɳ2−𝑠
< 0 

Therefore, 𝑔 is decreasing and 

𝑗𝜎𝑐′(ɳ) = 𝑐
𝑠 −∑𝑠(ɳ + ɳ)𝑠−1

𝑐

Ƅ=1

 

                                         = 𝑐𝑠 − 𝑠(ɳ + 1)𝑠−1 −∑𝑠(ɳ + Ƅ)𝑠−1
𝑐

Ƅ=2

 

In result 

𝑗𝜎′(ɳ) = 1 − 𝑠(ɳ + 1)
𝑠−1 −∑((𝑢 − 1)𝑠 − Ƅ𝑠 − 𝑠(ɳ + Ƅ)𝑠−1)

∞

Ƅ=2

 

So 

−𝛾(𝑗) = 𝑗𝜎′(0) = 1 − 𝑠 −∑((Ƅ − 1)𝑠 − Ƅ𝑠 − 𝑠Ƅ𝑠−1)

∞

Ƅ=2

 

−𝛾(𝑗, 1) = 𝑗𝜎′(1) = 1 −∑((𝑐 − 1)𝑠 − 𝑐𝑠 − 𝑠𝑐𝑠−1)

∞

𝑜=2
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𝑗𝜎𝑐(ɳ) = ɳ𝑐𝑠 +∑(Ƅ𝑠 − (Ƅ + ɳ)𝑠)

𝑐

Ƅ=1

 

In result 

𝑗𝜎̃(ɳ) =
1

ɳ
∑((1 + ɳ)𝑐𝑠 − (𝑐 + ɳ)𝑠 − ɳ(𝑐 − 1)𝑠)

∞

𝑐=1

 

Now the verdict is obtained from theorem 1. 

Conclusion 

This research report includes the study of Kama and zeta, marginal addition functions 

and their relationships, and Euler-type constants. Through the research article's theories and 

examples, explain the relationship and practical application between the derivation and 

Euler's constant. 
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