Implementasi Matriks Augmented dan Metode Eliminasi Gauss-Jordan untuk Menyelesaikan Masalah GPS (Studi Kasus: Menentukan Posisi Pejalan Kaki yang Tersesat)

Authors

  • Nadiya Azhar Mufid Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.47134/ppm.v1i1.111

Keywords:

global positioning system (GPS), linear algebra, desert navigation

Abstract

The Global Positioning System (GPS) is a satellite-based navigation system that enables users to determine their position and time anywhere near the Earth's surface. GPS calculates distance by knowing how long it takes for a radio signal to move from one point to another. Linear algebra, especially augmented matrices and the Gauss-Jordan elimination method, can be applied to solve GPS problems in the case study of a pedestrian lost in the desert. The position of a lost pedestrian in a desert will be determined based on satellite position and time data. The calculation results indicate that the position of the lost pedestrian is in the Bilma desert area, Agadez district, Niger, with coordinates at a longitude of 11.41199 and a latitude of 18.549.

References

Amiri-Ardakani, Y. (2021). Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques (Doctoral dissertation). Water Resources Management. doi: 10.1007/s11269-021-02911-6 DOI: https://doi.org/10.21203/rs.3.rs-377852/v1

Arthana, I. K. R., Setemen, K., Purnamawan, I. K., & Andiani, N. D. (2016). Penggalian dan Penyebaran Potensi Wisata Melalui Aplikasi Mobile dengan Konsep Crowdsourcing. Jurnal Pengabdian kepada Masyarakat dan Pendidikan Tinggi Kesejahteraan Sosial (JPTK), 13(1), 111–126. DOI: https://doi.org/10.23887/jptk.v13i1.6851

Barr, M. (2019). Validity and Reliability of 15 Hz Global Positioning System Units for Assessing the Activity Profiles of University Football Players. Journal of Strength and Conditioning Research, 33(5), 1371–1379. https://doi.org/0.1519/JSC.0000000000002076 DOI: https://doi.org/10.1519/JSC.0000000000002076

Bastida-Castillo, A. (2019). Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. European Journal of Sport Science, 19(9), 1157–1165. doi: 10.1080/17461391.2019.1584248 DOI: https://doi.org/10.1080/17461391.2019.1584248

Beato, M. (2018). Validity and reliability of global positioning system units (STATSports Viper) for measuring distance and peak speed in sports. Journal of Strength and Conditioning Research, 32(10), 2831–2837. https://doi.org/10.1519/JSC.0000000000002778 DOI: https://doi.org/10.1519/JSC.0000000000002778

Bixby, H. (2019). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature, 569(7755), 260–264. https://doi.org/10.1038/s41586-019-1171-x DOI: https://doi.org/10.1038/s41586-019-1171-x

Chen, K. (2020). Hypersonic boost–glide vehicle strapdown inertial navigation system/global positioning system algorithm in a launch-centered earth-fixed frame. Aerospace Science and Technology, 98. https://doi.org/10.1016/j.ast.2020.105679 DOI: https://doi.org/10.1016/j.ast.2020.105679

Cunningham, D. (2018). Assessing worst-case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195197 DOI: https://doi.org/10.1371/journal.pone.0195197

Dujon, A. M. (2018). Complex movement patterns by foraging loggerhead sea turtles outside the breeding season identified using Argos-linked Fastloc-Global Positioning System. Marine Ecology, 39(1). https://doi.org/10.1111/maec.12489 DOI: https://doi.org/10.1111/maec.12489

Eksan, S., Ponggawa, V., & Katuuk, R. E. (2022). Pemanfaatan GPS Pada Sistem Monitoring Perawatan Kendaraan Roda Empat dengan Konsep IoT. Jurnal Elektrika, 01(01), 23–34.

Halabi, L. M. (2018). Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Applied Energy, 213, 247–261. https://doi.org/10.1016/j.apenergy.2018.01.035 DOI: https://doi.org/10.1016/j.apenergy.2018.01.035

Hidayat, M. N. F., & Furqan, M. (2017). Konsep Penanganan Tindak Kriminal dengan Whistleblowing System (WBS) Android dan Teknologi Global Positioning System (GPS) di POLRES Probolinggo. Prosiding Seminar Nasional Teknologi Informasi dan Aplikasinya (SENTIA), 9(71), 1–8.

Huggins, R. A. (2020). The Validity and Reliability of Global Positioning System Units for Measuring Distance and Velocity During Linear and Team Sport Simulated Movements. Journal of Strength and Conditioning Research, 34(11), 3070–3077. https://doi.org/10.1519/JSC.0000000000003787 DOI: https://doi.org/10.1519/JSC.0000000000003787

Izzo, R. (2020). The role of fatigue in football matches, performance model analysis and evaluation during quarters using live global positioning system technology at 50 Hz. Sport Science, 13(1), 30–35.

Leva, J. L. (1996). An alternative closed-form solution to the GPS pseudo-range equations. IEEE Transactions on Aerospace and Electronic Systems, 32(4), 1430–1439. https://doi.org/10.1109/7.543864 DOI: https://doi.org/10.1109/7.543864

Liu, Y. (2018). Implementation and analysis of tightly coupled global navigation satellite system precise point positioning/inertial navigation system (GNSS PPP/INS) with insufficient satellites for land vehicle navigation. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124305 DOI: https://doi.org/10.3390/s18124305

Lu, Q. (2018). Uncertainty and Disturbance Estimator-Based Robust Trajectory Tracking Control for a Quadrotor in a Global Positioning System-Denied Environment. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 140(3). https://doi.org/10.1115/1.4037736 DOI: https://doi.org/10.1115/1.4037736

Nikolaidis, P. T. (2018). Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00228 DOI: https://doi.org/10.3389/fphys.2018.00228

Putra, A. S., Sukri, H., & Zuhri, K. (2018). Sistem Monitoring Realtime Jaringan Irigasi Desa (JIDES) Dengan Konsep Jaringan Sensor Nirkabel. Indonesian Journal of Electronics and Instrumentation Systems (IJEIS), 8(2), 221. https://doi.org/10.22146/ijeis.39783 DOI: https://doi.org/10.22146/ijeis.39783

Rahayu, M. I., Putra, A. R., & Faiqunisa. (2016). Aplikasi Pemandu Wisata Kuliner Bandung Berbasis GPS. Jurnal Desain Komunikasi Visual dan Intermedia, 5(2), 13–18.

Ravé, G. (2020). How to Use Global Positioning Systems (GPS) Data to Monitor Training Load in the “Real World” of Elite Soccer. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00944 DOI: https://doi.org/10.3389/fphys.2020.00944

Richards, K. (2022). Framing Perpetrators of Sexual Violence Who Participate in Circles of Support and Accountability (CoSA): An Analysis of Global Print Media Reporting. International Journal of Offender Therapy and Comparative Criminology. https://doi.org/10.1177/0306624X221113536 DOI: https://doi.org/10.1177/0306624X221113536

Sapucci, L. F. (2019). Global Positioning System precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorological Applications, 26(1), 49–63. https://doi.org/10.1002/met.1735 DOI: https://doi.org/10.1002/met.1735

Sarkisian, L. (2020). Global positioning system alerted volunteer first responders arrive before emergency medical services in more than four out of five emergency calls. Resuscitation, 152, 170–176. https://doi.org/10.1016/j.resuscitation.2019.12.010 DOI: https://doi.org/10.1016/j.resuscitation.2019.12.010

Su, K. (2020). Assessment of multi-frequency global navigation satellite system precise point positioning models using GPS, BeiDou, GLONASS, Galileo and QZSS. Measurement Science and Technology, 31(6). https://doi.org/10.1088/1361-6501/ab69d5 DOI: https://doi.org/10.1088/1361-6501/ab69d5

Susilo, Y. S., Pranjoto, H., & Gunadhi, A. (2017). Sistem Pelacakan dan Pengamanan Kendaraan Berbasis GPS dengan Menggunakan Komunikasi GPRS. Jurnal Ilmiah Widya Teknika, 13(1), 21–32.

Weiss, M. (1999). Global Positioning System Receivers and Relativity (NIST Tech. Note 1385). National Institute of Standards and Technology.

Weiss, M. (1999). Global Positioning System Receivers and Relativity (NIST Technical Note 1385), 1–46.

Zenk, S. (2018). How many days of global positioning system (GPS) monitoring do you need to measure activity space environments in health research? Health and Place, 51, 52–60. https://doi.org/10.1016/j.healthplace.2018.02.004 DOI: https://doi.org/10.1016/j.healthplace.2018.02.004

Downloads

Published

2023-11-20

How to Cite

Mufid, N. A. . (2023). Implementasi Matriks Augmented dan Metode Eliminasi Gauss-Jordan untuk Menyelesaikan Masalah GPS (Studi Kasus: Menentukan Posisi Pejalan Kaki yang Tersesat). Jurnal Pendidikan Matematika, 1(1), 13. https://doi.org/10.47134/ppm.v1i1.111

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.