Pembelajaran Berbasis Diskusi Sebagai Upaya Meningkatkan Hasil Belajar Siswa Kelas X dalam Materi Energi
DOI:
https://doi.org/10.47134/physics.v1i2.480Keywords:
Metode Diskusi, Hasil Belajar, Minat FisikaAbstract
Penelitian ini bertujuan untuk mengevaluasi efektivitas metode pembelajaran berbasis diskusi dalam meningkatkan pemahaman dan hasil belajar siswa pada materi energi dalam fisika. Dilakukan di MAN 1 Surakarta dengan subjek 4 siswa kelas X perempuan. Pre-test menunjukkan rata-rata nilai 40,25, meningkat menjadi 70,0 setelah penerapan metode diskusi. Respons siswa terhadap metode ini positif. Metode diskusi memungkinkan siswa untuk berbagi pengetahuan dan mengidentifikasi berbagai kemungkinan, serta mendorong keterlibatan aktif dalam pembelajaran. Hasil post-test menunjukkan peningkatan signifikan dalam pemahaman konsep. Metode ini memberikan solusi bagi siswa yang mengalami kesulitan belajar serta meningkatkan hasil belajar dalam fisika. Metode diskusi efektif dalam mengatasi tantangan dalam pembelajaran fisika, memungkinkan siswa untuk bertukar ide, memperdebatkan perspektif, dan membangun pemahaman yang mendalam tentang materi. Kesimpulannya, metode pembelajaran berbasis diskusi bermanfaat untuk meningkatkan hasil belajar siswa dan minat mereka terhadap fisika.
References
Alsoufi, A. (2020). Impact of the COVID-19 pandemic on medical education: Medical students’ knowledge, attitudes, and practices regarding electronic learning. PLoS ONE, 15(11). https://doi.org/10.1371/journal.pone.0242905 DOI: https://doi.org/10.1371/journal.pone.0242905
Andersson, G. (2019). Internet-delivered psychological treatments: from innovation to implementation. World Psychiatry, 18(1), 20–28. https://doi.org/10.1002/wps.20610 DOI: https://doi.org/10.1002/wps.20610
Angelopoulos, V. (2019). The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 215(1). https://doi.org/10.1007/s11214-018-0576-4 DOI: https://doi.org/10.1007/s11214-018-0576-4
Antonopoulos, I. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130. https://doi.org/10.1016/j.rser.2020.109899 DOI: https://doi.org/10.1016/j.rser.2020.109899
Berg, S. (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods, 16(12), 1226–1232. https://doi.org/10.1038/s41592-019-0582-9 DOI: https://doi.org/10.1038/s41592-019-0582-9
Deta, U. A., & Suprapto, N. (2012). Pembelajaran Fisika Model Diskusi Ditinjau dari Kecerdasan Intrapersonal Siswa. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 2(1), 30–36. DOI: https://doi.org/10.26740/jpfa.v2n1.p30-36
Ferri, F. (2020). Online learning and emergency remote teaching: Opportunities and challenges in emergency situations. Societies, 10(4). https://doi.org/10.3390/soc10040086 DOI: https://doi.org/10.3390/soc10040086
Gari, A. (2023). PENERAPAN METODE PEMBELAJARAN DISKUSI DALAM MENINGKATKAN HASIL BELAJAR SISWA PADA MATA PELAJARAN PPKn DI SMA SWASTA KAMPUS TELUKDALAM KELAS XI MIA-B. CIVIC SOCIETY RESEARCH and EDUCATION: Jurnal Pendidikan Pancasila Dan Kewarganegaraan, 4(1), 42–51.
Hadija, H., Kapile, C., & Juraid, J. (2017). Penerapan Metode Diskusi Untuk Meningkatkan Hasil Belajar Murid Kelas IV Pada Mata Pelajaran IPS di SDN No. 2 Tamarenja Kecamatan Sindue Tobata. Jurnal Kreatif Tadulako, 4(8), 108273.
Hamilton, W. L. (2020). Graph Representation Learning Hamilton. Synthesis Lectures on Artificial Intelligence and Machine Learning, 14(3), 1–159. https://doi.org/10.2200/S01045ED1V01Y202009AIM046 DOI: https://doi.org/10.2200/S01045ED1V01Y202009AIM046
Hasan, N. (2020). Impact of “e-Learning crack-up” perception on psychological distress among college students during COVID-19 pandemic: A mediating role of “fear of academic year loss.” Children and Youth Services Review, 118. https://doi.org/10.1016/j.childyouth.2020.105355 DOI: https://doi.org/10.1016/j.childyouth.2020.105355
Kumar, D. P. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25. https://doi.org/10.1016/j.inffus.2018.09.013 DOI: https://doi.org/10.1016/j.inffus.2018.09.013
Latifah, L. (2013). Metode Diskusi Kelompok Berbasis Inkuiri Untuk Meningkatkan Hasil Belajar Fisika Di Sma. Jurnal Ilmiah Guru Caraka Olah Pikir Edukatif, 1.
Ma, J. (2021). Image Matching from Handcrafted to Deep Features: A Survey. International Journal of Computer Vision, 129(1), 23–79. https://doi.org/10.1007/s11263-020-01359-2 DOI: https://doi.org/10.1007/s11263-020-01359-2
Murdoch, W. J. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences of the United States of America, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116 DOI: https://doi.org/10.1073/pnas.1900654116
Oztemel, E. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127–182. https://doi.org/10.1007/s10845-018-1433-8 DOI: https://doi.org/10.1007/s10845-018-1433-8
Pollock, A. (2020). Interventions to support the resilience and mental health of frontline health and social care professionals during and after a disease outbreak, epidemic or pandemic: a mixed methods systematic review. Cochrane Database of Systematic Reviews, 2020(11). https://doi.org/10.1002/14651858.CD013779 DOI: https://doi.org/10.1002/14651858.CD013779
Sanga, L. D., & Wangdra, Y. (2023). Pendidikan Adalah Faktor Penentu Daya Saing Bangsa. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (SNISTEK), 5, 84–90. DOI: https://doi.org/10.33884/psnistek.v5i.8067
Subiki, S., Hamidy, A. N., Istighfarini, E. T., Suharsono, F. Y. H., & Putri, S. F. D. (2022). Pengaruh Media Pembelajaran Phet Simulation Terhadap Hasil Belajar Siswa SMA Negeri Plus Sukowono Materi Usaha dan Energi Tahun Pelajaran 2021/2022. ORBITA: Jurnal Pendidikan Dan Ilmu Fisika, 8(2), 200–204. DOI: https://doi.org/10.31764/orbita.v8i2.9586
Tian, H. (2020). Computer vision technology in agricultural automation —A review. Information Processing in Agriculture, 7(1), 1–19. https://doi.org/10.1016/j.inpa.2019.09.006 DOI: https://doi.org/10.1016/j.inpa.2019.09.006
Unke, O. T. (2021). Machine Learning Force Fields. Chemical Reviews, 121(16), 10142–10186. https://doi.org/10.1021/acs.chemrev.0c01111 DOI: https://doi.org/10.1021/acs.chemrev.0c01111
Wang, H. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198. https://doi.org/10.1016/j.enconman.2019.111799 DOI: https://doi.org/10.1016/j.enconman.2019.111799
Wang, X. (2020). Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 22(2), 869–904. https://doi.org/10.1109/COMST.2020.2970550 DOI: https://doi.org/10.1109/COMST.2020.2970550
Zappone, A. (2019). Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both? IEEE Transactions on Communications, 67(10), 7331–7376. https://doi.org/10.1109/TCOMM.2019.2924010 DOI: https://doi.org/10.1109/TCOMM.2019.2924010
Zhou, Z. H. (2019). Deep forest. National Science Review, 6(1), 74–86. https://doi.org/10.1093/nsr/nwy108 DOI: https://doi.org/10.1093/nsr/nwy108
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Ichsan Rafi Alimuddin, Revalina Zulfalhutfi Syafi'ah, Muhammad Lazuardi Oktario Nugraha, Raihan Muflikh Prabowo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.